Development of In Vitro-In Vivo Correlation of Parenteral
Naltrexone Loaded Polymeric Microspheres
J. V. Andhariya ¹ , J. Shen ¹ , Y. Zou ² , S. Choi ² , Y. Wang ² , D. J. Burgess ¹
1-University of Connecticut, School of Pharmacy, Storrs, CT 06269
2- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD 20993
Janki.andhariya@uconn.edu; d.burgess@uconn.edu

INTRODUCTION

+ Establishment of in vitro-in vivo correlations (IVIVCs) for parenteral polymeric microspheres has been challenging, due to their complex multiphase release characteristics as well as the lack of compendial *in vitro* release testing methods.

The objective of the present study was: To investigate whether a Level A IVIVC can be established for compositionally equivalent microspheres prepared with manufacturing differences.

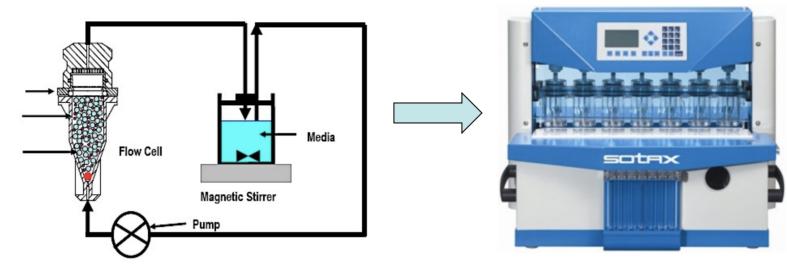
METHODS

1. <u>Preparation of Microspheres</u>: Three Q_1/Q_2 equivalent naltrexone microspheres were prepared using different manufacturing processes.

Sample	Preparation Method	Solvent System	Solvent Removal
Formulation 1	Magnetic Stirring	Methylene Chloride & Benzyl alcohol	Solvent Evaporation
Formulation 2	Magnetic Stirring	Ethyl Acetate & Benzyl alcohol	Solvent Extraction
Formulation 3	Homogenization	Ethyl Acetate & Benzyl alcohol	Solvent Extraction

2. <u>Evaluation of Critical Quality Attributes</u>: The obtained naltrexone microspheres were evaluated for various critical quality attributes.

3. In Vitro Release Testing:


- Briefly, ~ 10 mg of microspheres mixed with glass beads were put into flow through cells
- **Medium**: 10 mM phosphate buffer with Tween 20 and sodium azide, pH 7.4
- Testing Temperature: 37°C Flow Rate: 8 ml/min

4. In Vivo Release Testing:

Model: Rabbit

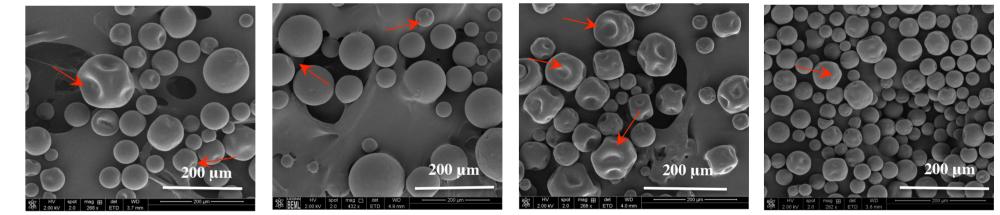
3995

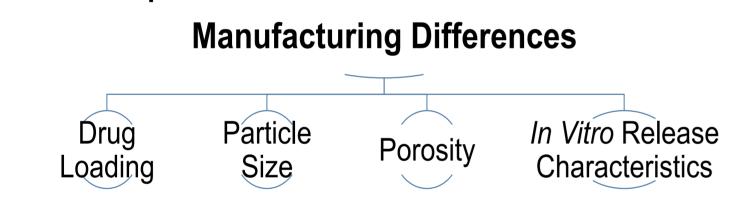
- Route: IM injection
- Dose: 11.69 mg/kg

Developed USP apparatus 4 method

Critical Quality Attributes	Method of Determination		
Drug loading	High Performance liquid chromatography		
Particle size Accusizer auto dilution particle sizing system			
Porosity Mercury porosimetry			
Morphology Scanning electron microscopy			
Moisture Content Karl-fischer titration			
Glass transition temperature	Modulated temperature differential scanning calorimeter		

- Blood sample collection: Periodically from marginal ear veins
- Analytical method: LC-MS

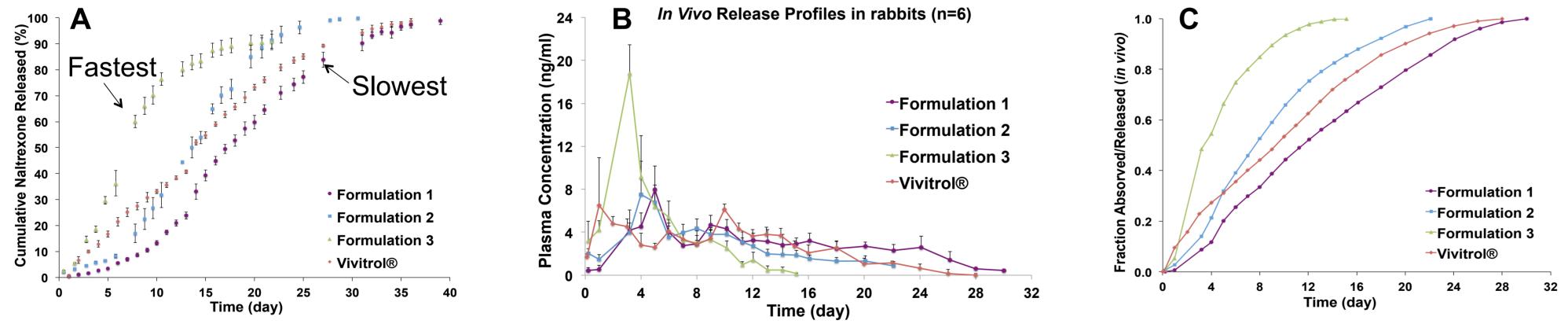

- Deconvolution of the *in vivo* naltrexone release using the Loo-Riegelman method.
- Comparison of the deconvoluted in vivo release profiles with the in vitro release profiles of the microspheres to determine if there is any correlation.


RESULTS AND DISCUSSION

It was observed that minor changes in \bullet manufacturing processes had significant impact on certain critical quality attributes of the microspheres.

1	1. Physicochemical Properties:					
	Sample	Drug Loading (%, w/w)	Particle Size (µm) (Mean±SD)	% Porosity		

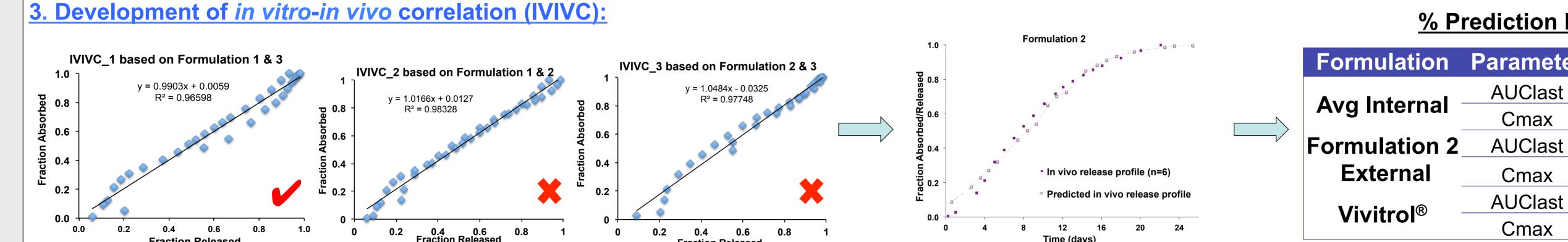
Morphology:



Formulation 1	28.74±1.64	121.11±3.61	49.83
Formulation 2	29.70±1.11	105.49±8.63	58.32
Formulation 3	29.57±1.75	68.56±1.52	65.08
Vivitrol®	33.50±1.43	108.40±7.4	50.21

Vivitrol® Formulation 1 Formulation 3 Formulation 2

Figure 1. SEM monographs of the prepared Q_1/Q_2 equivalent naltrexone microspheres and Vivitrol[®]


2. In vitro and in vivo release testing:

Pharmacokinetic Parameters

Formulation	t _{1/2} (day)	T _{max} (day)	C _{max} (ng/ml)	AUC last
Formulation 1	15.13	5	5.3	53.41
Formulation 2	6.17	4	5.0	41.92
Formulation 3	2.12	3	12.5	48.14
Vivitrol®	3.78	1	7.54	74.60

Figure 2. A) In vitro release profiles; B) In vivo release profiles; C) Deconvoluted in vivo release profiles of the prepared Q_1/Q_2 equivalent naltrexone microspheres (n=3)

<u>% Prediction Error (PE) of IVIVC 1</u>

Formulation	Parameter	Observed	Predicted	%PE
Ava Intornal	AUClast	70.89	76.50	7.04
Avg Internal	Cmax	11.22	13.38	11.96
Formulation 2	AUClast	69.14	62.78	10.13
External	Cmax	7.74	7.49	3.38
Vivitrol®	AUClast	81.70	74.60	9.53
VIVILIOI	Cmax	6.84	7.54	-9.27

	Fraction Released	Traction Released	Fraction Released	
CO	NCLUSIONS			
r				

1. Various physicochemical properties (such as particle size, porosity and drug loading) appeared to be sensitive to minor changes in manufacturing processes, which in turn affect *in vitro* drug release characteristics.

2. Level A IVIVC was developed using the developed modified USP apparatus 4 in vitro release testing for the prepared naltrexone microspheres with manufacturing differences.

REFERENCES

1. J. Andhariya, D.J. Burgess, et.al. Development of in vitro-in vivo correlation for parenteral naltrexone loaded microspheres. J Control Release, 2017; 255 :27-35. 2. FDA Guidance for Industry: extended release oral dosage forms: development, evaluation and application of in vitro/in vivo correlation, Rockville, MD, 1997.

ACKNOWLEDGEMENT

- Support was provided by the Office of Generic Drugs/Office of Research Standards, U.S. FDA (Grant Award 1U01FD004931-02).
- Support from Sotax Corporation for instrumentation and instrument maintenance is highly appreciated.
- **Disclaimer:** This poster reflects the views of the authors and should not be construed to represent FDA'S views or policies.