26M0200

Effect of Manufacturing Processes on In Vitro and In Vivo Performance of Naltrexone Microspheres Janki V. Andhariya¹, Jie Shen¹, Stephanie Choi², Yan Wang², Wen Qu³, Yuan Zou², Diane J. Burgess¹ ¹University of Connecticut, School of Pharmacy, CT 06269 ²FDA/CDER/OGD/ORS, MD 20993

PURPOSE

UCONN

- Manufacturing changes may affect various microsphere physicochemical characteristics such as particle size and porosity, which in turn may affect the in vitro and in vivo release characteristics of these complex parenteral dosage forms.
- The objectives of the present study were:
- 1) To understand how manufacturing processes affect drug release from compositionally equivalent naltrexone microspheres;
- 2) To explore whether the developed in vitro release testing method can be potentially used to predict in vivo release characteristics of the prepared qualitatively (Q_1) and quantitatively (Q_2) equivalent naltrexone microspheres.

METHOD

Preparation and Characterization of Microspheres Three Q₁/Q₂ equivalent naltrexone microspheres were prepared using different manufacturing processes.

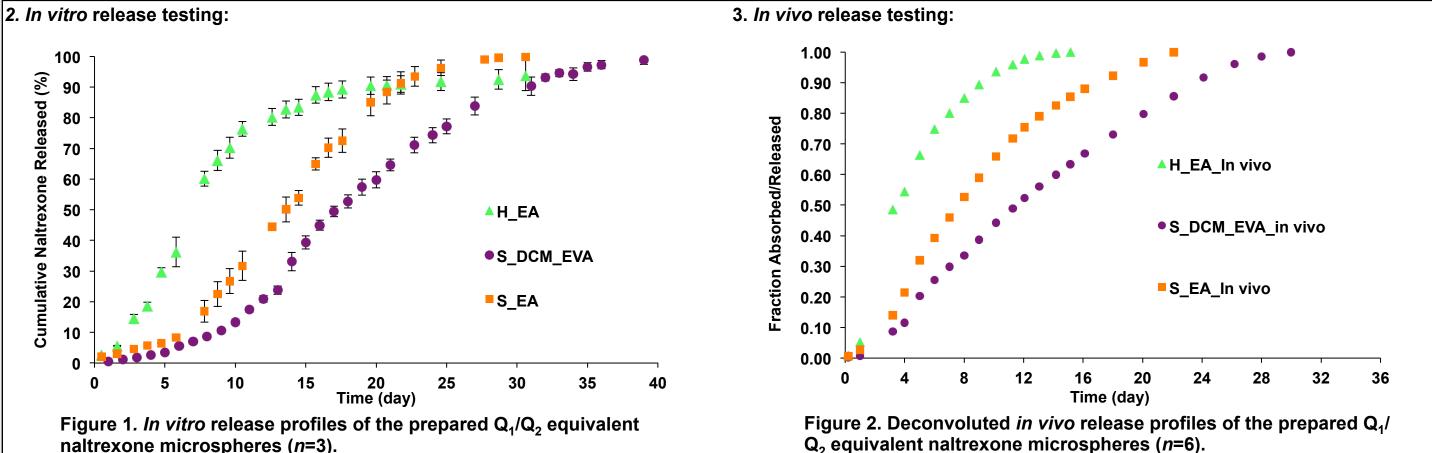
Sample	Preparation	Solvent	Solvent
	Method	System	Removal
S_DCM_EVA	Magnetic	Methylene	Solvent
	Stirring	Chloride	Evaporation
S_EA	Magnetic	Ethyl	Solvent
	Stirring	Acetate	Extraction
H_EA	Homogenization	Ethyl Acetate	Solvent Extraction

Physicochemical properties of the microspheres (such as particle size and porosity) were characterized.

2. In Vitro Release Testing

Method: Modified USP apparatus 4 Release medium: phosphate buffer saline (pH=7.4) Temperature: 37°C (real-time)

In Vivo Release Testing


Route: IM injection

Blood sample collection: Periodically from marginal ear veins Analytical method: LC-MS

Deconvolution of the *in vivo* naltrexone release using the Loo-Riegelman method. Comparison of the deconvoluted in vivo release profiles with the *in vitro* release profiles of the microspheres to see if there is any correlation.

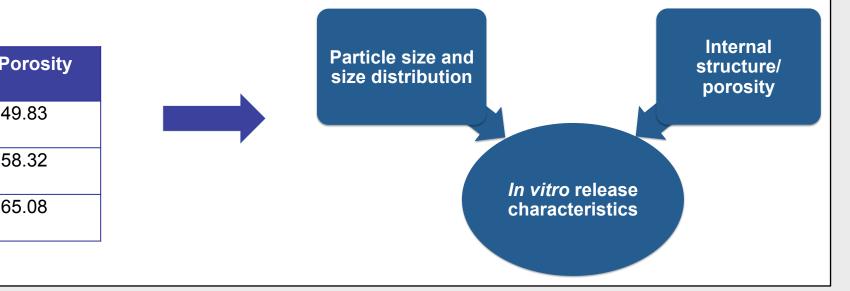
Physicochemical properties:

Sample	Drug Loading (%, w/w)	Particle Size (µm) (Mean±SD)	% P
S_DCM_EVA	28.74±1.64	121.11±3.61	4
S_EA	29.70±1.11	105.49±8.63	5
H_EA	29.57±1.75	68.56±1.52	6

naltrexone microspheres (*n*=3).

CONCLUSIONS

- performance of complex parenteral polymeric microspheres testing using Risperdal[®] Consta[®]. Int J Pharm, 2011; 20 (2): 198-205. are sensitive to minor manufacturing changes.
- Even with equivalent composition, naltrexone microspheres 2 with manufacturing differences had different in vitro and in vivo performance.
- The developed in vitro release testing method is capable of detecting manufacturing differences, and has the potential of predicting the in vivo performance of the prepared Q_1/Q_2 equivalent naltrexone microspheres.



OLORADO CONVENTION CENTER, DENVER

NOVEMBER 13-17, 2016

RESULTS

REFERENCE

Physicochemical properties as well as *in vitro* and *in vivo* 1. A. Rawat, D.J. Burgess, *et al.* Validation of USP apparatus 4 method for microsphere *in vitro* release

FUNDING/DISCLAIMER

• The authors would like to thank the Office of Generic Drugs/Office of Research Standards, U.S. FDA (Grant Award 5U01FD004931-02) for funding the project.

Support from Sotax Corporation for instrumentation and instrument maintenance is highly appreciated. **Disclaimer:** This poster reflects the views of the authors and should not be construed to represent FDA'S views or policies.